Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med ; 11(17)2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2010166

ABSTRACT

During the last few decades, due to the increase in elderly patients among the general population, the number of patients aged over 80 years admitted in intensive care significantly incremented [...].

2.
J Clin Med ; 11(8)2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1785776

ABSTRACT

Our aim was to investigate the distribution of acid-base disorders in patients with COVID-19 ARDS using both the Henderson-Hasselbalch and Stewart's approach and to explore if hypoxemia can influence acid-base disorders. COVID-19 ARDS patients, within the first 48 h of the need for a non-invasive respiratory support, were retrospectively enrolled. Respiratory support was provided by helmet continuous positive airway pressure (CPAP) or by non-invasive ventilation. One hundred and four patients were enrolled, 84% treated with CPAP and 16% with non-invasive ventilation. Using the Henderson-Hasselbalch approach, 40% and 32% of patients presented respiratory and metabolic alkalosis, respectively; 13% did not present acid-base disorders. Using Stewart's approach, 43% and 33% had a respiratory and metabolic alkalosis, respectively; 12% of patients had a mixed disorder characterized by normal pH with a lower SID. The severe hypoxemic and moderate hypoxemic group presented similar frequencies of respiratory and metabolic alkalosis. The most frequent acid-base disorders were respiratory and metabolic alkalosis using both the Henderson-Hasselbalch and Stewart's approach. Stewart's approach detected mixed disorders with a normal pH probably generated by the combined effect of strong ions and weak acids. The impairment of oxygenation did not affect acid-base disorders.

3.
Biomedicines ; 10(3)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753434

ABSTRACT

The emergence of SARS-CoV-2 and its related disease caused by coronavirus (COVID-19) has posed a huge threat to the global population, with millions of deaths and the creation of enormous social and healthcare pressure. Several studies have shown that besides respiratory illness, other organs may be damaged as well, including the heart, kidneys, and brain. Current evidence reports a high frequency of neurological manifestations in COVID-19, with significant prognostic implications. Importantly, emerging literature is showing that the virus may spread to the central nervous system through neuronal routes, hitting the brainstem and cardiorespiratory centers, potentially exacerbating the respiratory illness. In this systematic review, we searched public databases for all available evidence and discuss current clinical and pre-clinical data on the relationship between the lung and brain during COVID-19. Acknowledging the involvement of these primordial brain areas in the pathogenesis of the disease may fuel research on the topic and allow the development of new therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL